学习方式
先独立思考后请教别人:思考可以对知识理解得更深刻,可以使所学的东西更扎实,可以使大脑变得更灵活。所谓学问,就是要又学又问。当遇到学习上的困难时,应在自己思考的基础上求得别人帮助,但最好不要只问答案,而要共同探讨,以求开拓思路。许多经验丰富的老师都说,那些经常问问题的同学,他们的能力要优于他人。平时,他们看起来似乎领悟得较慢,但在测验或考试的时候,他们却考得非常好。
初二数学学习方法:重要的数学思想
1、“方程”的思想
数学是研究事物的空间形式和数量关系的,初中最重要的数量关系是等量关系,其次是不等量关系。最常见的等量关系就是“方程”。比如等速运动中,路程、速度和时间三者之间就有一种等量关系,可以建立一个相关等式:速度*时间=路程,在这样的等式中,一般会有已知量,也有未知量,像这样含有未知量的等式就是“方程”,而通过方程里的已知量求出未知量的过程就是解方程。我们在小学就已经接触过简易方程,而初一则比较系统地学习解一元一次方程,并总结出解一元一次方程的五个步骤。如果学会并掌握了这五个步骤,任何一个一元一次方程都能顺利地解出来。初二、初三我们还将学习解一元二次方程、二元二次方程组、简单的三角方程;到了高中我们还将学习指数方程、对数方程、线性方程组、、参数方程、极坐标方程等。解这些方程的思维几乎一致,都是通过一定的方法将它们转化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五个步骤或者解一元二次方程的求根公式加以解决。物理中的能量守恒,化学中的化学平衡式,现实中的大量实际应用,都需要建立方程,通过解方程来求出结果。因此,同学们一定要将解一元一次方程和解一元二次方程学好,进而学好其它形式的方程。
所谓的“方程”思想就是对于数学问题,特别是现实当中碰到的未知量和已知量的错综复杂的关系,善于用“方程”的观点去构建有关的方程,进而用解方程的方法去解决它。
初二数学学习方法:“数形结合”的思想
大千世界,“数”与“形”无处不在。任何事物,剥去它的质的方面,只剩下形状和大小这两个属性,就交给数学去研究了。初中数学的两个分支棗-代数和几何,代数是研究“数”的,几何是研究“形”的。但是,研究代数要借助“形”,研究几何要借助“数”,“数形结合”是一种趋势,越学下去,“数”与“形”越密不可分,到了高中,就出现了专门用代数方法去研究几何问题的一门课,叫做“解析几何”。在初三,建立平面直角坐标系后,研究函数的问题就离不开图象了。往往借助图象能使问题明朗化,比较容易找到问题的关键所在,从而解决问题。在今后的数学学习中,要重视“数形结合”的思维训练,任何一道题,只要与“形”沾得上一点边,就应该根据题意画出草图来分析一番,这样做,不但直观,而且全面,整体性强,容易找出切入点,对解题大有益处。尝到甜头的人慢慢会养成一种“数形结合”的好习惯。
如此“奋战”了许久,我才使“劳逸结合”真正成为了自己生活的现实。
学习是一项系统工程,它所涉及的因素很多。从学习的能力因素来讲,有注意力、记忆力、观察力、想象力、思考能力等;从学习的过程来说,涉及到听课、作业、练习、复习、考试等诸多环节;从学习的科目来看,又有数学、物理、化学、语文、外语等等。这么多因素、环节、方面,抓起来着实不易,这就需要学习者对自己的学习有一种系统管理的思想和能力,有章有法,持之以恒,而不能想起什么就抓什么,喜欢什么就做什么,把学习弄成了一种杂乱无章的、低效的活动。
初中数学压轴题型
线段、角的计算与证明问题:中考的解答题一般是分两到三部分的。第一部分基本上都是一些简单题或者中档题,目的在于考察基础。第二部分往往就是开始拉分的中难题了。 对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。线段与角的计算和证明,一般来说难度不会很大,只要找到关键“题眼”,后面的路子自己就“通”了。
初中物理与高中物理有什么区别?
注重物理过程的分析:就是要了解物理事件的发生过程,分清在这个过程中哪些物理量不变,哪些物理量发生了变化。特别是针对两个以上的物理过程更应该分析清楚。若不分析清楚过程及物理量的变化,就容易出错。
生物数学概论
在系统和控制理论中,综合分析的特点还表现在把输出和状态的变化反馈对系统的影响,即反馈关系也考虑在内。生命活动普遍存在反馈现象,许多生命过程在反馈条件的制约下达到平衡,生命得以维持和延续。对系统的控制常常靠反馈关系来实现。
倘若就我们的学习喻作航船,勤奋则是轮船的马达;正确的学习方法便是轮船的方向盘与航线、让我们驾上这艘希冀之船在知识的海洋中园游,让船儿载着我们驶向美好吧!