初一数学为什么必须打好基础
合理渗透。在教学中要挖掘教材内容中的学法因素,把学法指导渗透到教学过程中。例如我在进行《完全平方公式》教学时,很多孩子老是漏掉系数2乘以首尾两项,于是我就给他们编了首顺口溜,"头平方,尾平方,头尾组合2拉走",这样选取生动、有趣的记忆法来指导学生学习,有利于突破知识的难点。②随机点拨。无论是在授课阶段还是在学生练习阶段,教师要有强烈的学法指导意识,抓住最佳契机,画龙点睛地点拨学习方法。
![成都暑假初中提分辅导收费](https://www.cy722.com/upload/2020/51.jpg)
初二数学学习方法:重要的数学思想
1、“方程”的思想
数学是研究事物的空间形式和数量关系的,初中最重要的数量关系是等量关系,其次是不等量关系。最常见的等量关系就是“方程”。比如等速运动中,路程、速度和时间三者之间就有一种等量关系,可以建立一个相关等式:速度*时间=路程,在这样的等式中,一般会有已知量,也有未知量,像这样含有未知量的等式就是“方程”,而通过方程里的已知量求出未知量的过程就是解方程。我们在小学就已经接触过简易方程,而初一则比较系统地学习解一元一次方程,并总结出解一元一次方程的五个步骤。如果学会并掌握了这五个步骤,任何一个一元一次方程都能顺利地解出来。初二、初三我们还将学习解一元二次方程、二元二次方程组、简单的三角方程;到了高中我们还将学习指数方程、对数方程、线性方程组、、参数方程、极坐标方程等。解这些方程的思维几乎一致,都是通过一定的方法将它们转化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五个步骤或者解一元二次方程的求根公式加以解决。物理中的能量守恒,化学中的化学平衡式,现实中的大量实际应用,都需要建立方程,通过解方程来求出结果。因此,同学们一定要将解一元一次方程和解一元二次方程学好,进而学好其它形式的方程。
所谓的“方程”思想就是对于数学问题,特别是现实当中碰到的未知量和已知量的错综复杂的关系,善于用“方程”的观点去构建有关的方程,进而用解方程的方法去解决它。
初二数学学习方法:“数形结合”的思想
大千世界,“数”与“形”无处不在。任何事物,剥去它的质的方面,只剩下形状和大小这两个属性,就交给数学去研究了。初中数学的两个分支棗-代数和几何,代数是研究“数”的,几何是研究“形”的。但是,研究代数要借助“形”,研究几何要借助“数”,“数形结合”是一种趋势,越学下去,“数”与“形”越密不可分,到了高中,就出现了专门用代数方法去研究几何问题的一门课,叫做“解析几何”。在初三,建立平面直角坐标系后,研究函数的问题就离不开图象了。往往借助图象能使问题明朗化,比较容易找到问题的关键所在,从而解决问题。在今后的数学学习中,要重视“数形结合”的思维训练,任何一道题,只要与“形”沾得上一点边,就应该根据题意画出草图来分析一番,这样做,不但直观,而且全面,整体性强,容易找出切入点,对解题大有益处。尝到甜头的人慢慢会养成一种“数形结合”的好习惯。
初中生学习心得
学会一题多解:一道题目可以用许多方法来解答,平时做题不应只着眼于做出这道题,而要尝试用多种解法来解答。尝试从多个角度去解题,可以拓宽思路,在遇到其他类型的题目时更会有意外收获。
初中数学学习方法
在考试中,总能看到一些学生出现许多空白的试卷,有几个问题才开始去做。当然,俗话说的好,艺高“大胆,艺术不工作勇敢并不大。但是,不能做是一回事,不做是另一回事。稍微有点困难的数学问题不是一眼就能看到它的方法和结果。分析,探索,比画和写数学,经过曲折的推理或微积分,显示条件和结论之间的联系,整个想法是明确清晰。
初中物理与高中物理有什么区别?
注意运用图象:图象法是一种分析问题的新方法,它的最大特点是直观,对我们处理问题有很好的帮助。但是容易混淆。如位移图象和速度图象就容易混淆,同学们常感到头痛,其实只要分清楚纵坐标的物理量,结合运动学的变化规律,就比较容易掌握。
生物数学概论
继托姆之后,跃变论不断地发展。例如塞曼又提出初级波和二级波的新理论。跃变理论的新发展对生物群落的分布、传染疾病的蔓延、胚胎的发育等生物学问题赋予新的理解。上述各种生物数学方法的应用,对生物学产生重大影响。20世纪50年代以来,生物学突飞猛进地发展,多种学科向生物学渗透,从不同角度展现生命物质运动的矛盾,数学以定量的形式把这些矛盾的实质体现出来。从而能够使用数学工具进行分析;能够输入电脑进行精确的运算;还能把来自名方面的因素联系在一起,通过综合分析阐明生命活动的机制。
多年的教学实践和科学研究发现,凡是学习成绩优异的学生,都很重视学习的调整,调整包括对学习目的、学习态度、学习计划、学习方法的调整。通过调整,学习目的明确了,态度端正了,计划合理了,方法科学了,时间的分配和精力的使用恰当了,学习就会不断取得进步,学习成绩自然也就提高了.